There is a pressing need to accelerate therapeutic strategies against the syndromes caused by frontotemporal lobar degeneration, including symptomatic treatments. One approach is for experimental medicine, coupling neurophysiological studies of the mechanisms of disease with pharmacological interventions aimed at restoring neurochemical deficits. Here we consider the role of glutamatergic deficits and their potential as targets for treatment. We performed a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study in 20 people with symptomatic frontotemporal lobar degeneration (10 behavioural variant frontotemporal dementia, 10 progressive supranuclear palsy) and 19 healthy age- and gender-matched controls. Both magnetoencephalography sessions recorded a roving auditory oddball paradigm: on placebo or following 10 mg memantine, an uncompetitive NMDA-receptor antagonist. Ultra-high-field magnetic resonance spectroscopy confirmed lower concentrations of GABA in the right inferior frontal gyrus of people with frontotemporal lobar degeneration. While memantine showed a subtle effect on early-auditory processing in patients, there was no significant main effect of memantine on the magnitude of the mismatch negativity (MMN) response in the right frontotemporal cortex in patients or controls. However, the change in the right auditory cortex MMN response to memantine (vs. placebo) in patients correlated with individuals’ prefrontal GABA concentration. There was no moderating effect of glutamate concentration or cortical atrophy. This proof-of-concept study demonstrates the potential for baseline dependency in the pharmacological restoration of neurotransmitter deficits to influence cognitive neurophysiology in neurodegenerative disease. With changes to multiple neurotransmitters in frontotemporal lobar degeneration, we suggest that individuals’ balance of excitation and inhibition may determine drug efficacy, with implications for drug selection and patient stratification in future clinical trials.