As climate change intensifies, resulting in more severe rainfall events, coastal cities globally are witnessing significant life and property losses. A growingly crucial component for flood prevention and relief are urban storm flood simulations, which aid in informed decision-making for emergency management. The vastness of data and the intricacies of 3D computations can make visualizing the urban flood effects on infrastructure daunting. This study offers a 3D visualization of the repercussions of hurricane storm surge flooding on Galveston, TX residences, illustrating the impact on each structure and road across varied storm conditions. We employ target detection to pinpoint house door locations, using door inundation as a metric to gauge potential flood damage. Within a GIS-based framework, we model the damage scope for residences exposed to varying storm intensities. Our research achieves three core goals: 1) Estimating the storm inundation levels on homes across different storm conditions; 2) Assessing first-floor elevations to categorize housing damages into three distinct groups; and 3) Through visualization, showcasing the efficacy of a proposed dike designed to shield Galveston Island from future storm surge and flood events.