The gas dynamics equations, coupled with a static gravitational field, admit the hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term. Many astrophysical problems involve the hydrodynamical evolution in a gravitational field, therefore it is essential to correctly capture the effect of gravitational force in the simulations. Improper treatment of the gravitational force can lead to a solution which either oscillates around the equilibrium, or deviates from the equilibrium after a long time run. In this paper we design high order well-balanced finite difference WENO schemes to this system, which can preserve the hydrostatic balance state exactly and at the same time can maintain genuine high order accuracy. Numerical tests are performed to verify high order accuracy, well-balanced property, and good resolution for smooth and discontinuous solutions.
Keywords
TR-2011-279. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S ACRONYM(S)
SPONSOR/MONITOR'S REPORT NUMBER(S)
DISTRIBUTION/AVAILABILITY STATEMENTApproved for public release; distribution unlimited
SUPPLEMENTARY NOTES
ABSTRACTThe gas dynamics equations, coupled with a static gravitational field, admit the hydrostatic balance where the flux produced by the pressure is exactly canceled by the gravitational source term. Many astrophysical problems involve the hydrodynamical evolution in a gravitational field, therefore it is essential to correctly capture the effect of gravitational force in the simulations. Improper treatment of the gravitational force can lead to a solution which either oscillates around the equilibrium, or deviates from the equilibrium after a long time run. In this paper we design high order well-balanced finite difference WENO schemes to this system, which can preserve the hydrostatic balance state exactly and at the same time can maintain genuine high order accuracy. Numerical tests are performed to verify high order accuracy, well-balanced property, and good resolution for smooth and discontinuous solutions.