The surface energy balance algorithm for land (SEBAL) has been successfully applied to estimate evapotranspiration (ET) and yield at different spatial scales. However, ET and yield patterns have never been investigated under highly heterogeneous conditions. We applied SEBAL in a salt-affected and water-stressed maize field located at the margin of the Venice Lagoon, Italy, using Landsat images. SEBAL results were compared with estimates of evapotranspiration by the Food and Agriculture Organization (FAO) method (ET c ) and three-dimensional soil-plant simulations. The biomass production routine in SEBAL was then tested using spatially distributed crop yield measurements and the outcomes of a soil-plant numerical model. The results show good agreement between SEBAL evapotranspiration and ET c . Instantaneous ET simulated by SEBAL is also consistent with the soil-plant model results (R 2 = 0.7047 for 2011 and R 2 = 0.6689 for 2012). Conversely, yield predictions (6.4 t/ha in 2011 and 3.47 t/ha in 2012) are in good agreement with observations (8.64 t/ha and 3.86 t/ha, respectively) only in 2012 and the comparison with soil-plant simulations (8.69 t/ha and 5.49 t/ha) is poor. In general, SEBAL underestimates land productivity in contrast to the soil-plant model that overestimates yield in dry years. SEBAL provides accurate predictions under stress conditions due to the fact that it does not require knowledge of the soil/root characteristics.crop-specific relations between ET and yield [6,7], it provides a measure of both water demand and land productivity. Yield is thus the ultimate indicator to describe crop response to water resource management [8] and the quantification of field scale ET is fundamental for managers to maximize land productivity while minimizing water losses [9][10][11]. Crop yield is also a key element for rural development and national food security. For these reasons, forecasting crop yield a few months before harvest can be of paramount importance for timely initiation of the food trade, securing national demand, and organizing food transport within countries [6,7,12].The yield of many agricultural crops is generally predicted from the amount of water used by the crop, i.e., ET [6,7]. Traditionally, ET from fields has been estimated according to the Food and Agriculture Organization (FAO) method [13], i.e., by multiplying a weather-based reference ET 0 by a crop coefficient (K c ) determined according to crop type and growth stage. However, the suitability of the idealized K c coefficient to describe the actual vegetative and growing conditions, especially in water limited areas, was questioned by many authors [14]. In addition, it is difficult to predict the correct growth stage dates for large populations of crops and fields [15].A viable alternative for mapping evaporation at field and regional scales is the use of satellite images that can provide an excellent tool to detect the spatial and temporal structure of ET [16]. Remote sensing (RS) is a reliable and cost-effective method to forecas...