2013
DOI: 10.1080/14498596.2013.812024
|View full text |Cite
|
Sign up to set email alerts
|

Mapping soil organic matter with limited sample data using geographically weighted regression

Abstract: The spatial information of soil organic matter (SOM) is crucial for precision agriculture and environmental modeling. It is, however, difficult to obtain the regional details of SOM by dense sampling due to the high cost. Although a variety of interpolation methods are available for mapping SOM at regional scales, accurate prediction usually needs densely distributed samples and requires the interpolated variable to meet some constraints such as spatial stationarity. This paper introduces the Geographically We… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

1
6
0
2

Year Published

2016
2016
2023
2023

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 19 publications
(9 citation statements)
references
References 42 publications
1
6
0
2
Order By: Relevance
“…This means that the global OLS model can capture only 41 percent of the influence of the explanatory variables, but the GWR method represents a significant improvement. In general, above results prove that the GWR model performed much better than the OLS model did, which is consistent with findings in previous studies (Jaimes, Sendra, Delgado, & Plata, 2010;Oliveira, Pereira, San-Miguel-Ayanz, & Lourenço, 2014;Qu, Li, Zhang, Huang, & Zhao, 2014;Wang, Zhang, Li, Lin, & Zhang, 2014).…”
Section: Gwr Resultssupporting
confidence: 82%
“…This means that the global OLS model can capture only 41 percent of the influence of the explanatory variables, but the GWR method represents a significant improvement. In general, above results prove that the GWR model performed much better than the OLS model did, which is consistent with findings in previous studies (Jaimes, Sendra, Delgado, & Plata, 2010;Oliveira, Pereira, San-Miguel-Ayanz, & Lourenço, 2014;Qu, Li, Zhang, Huang, & Zhao, 2014;Wang, Zhang, Li, Lin, & Zhang, 2014).…”
Section: Gwr Resultssupporting
confidence: 82%
“…In addition to the complex relationships between soil attributes and covariates, the number of samples and irregular distribution can negatively affect the predictions. However, the number of samples seems to have less effect on the GWR than the MLR, as shown by Wang et al (2014). The authors conclude that the GWR may be an alternative method for spatial prediction of SOC contents, even with a limited number of samples.…”
Section: Resultsmentioning
confidence: 92%
“…Respecto al efecto que muestran las variables, se observa en el grupo de las variables topográficas que tienen una notable influencia en la predicción del contenido de la MOS (Berhe, 2012;Doetterl et al, 2012;Wang et al, 2014), y muy especialmente la pendiente (Slp) y las curvaturas (CuP y CuPP) del terreno. En los tres casos existe una relación directa con la disminución de la MOS en las áreas llanas o de escasa pendiente.…”
Section: Discusión Y Conclusionesunclassified
“…Con el fin de avanzar en una cartografía de suelos más detallada a lo largo de los últimos años se han elaborado diferentes técnicas para predecir, sobre grandes extensiones (de aquí en adelante, regionales), el valor de una variable determinada del suelo. En los primeros 1980s se abordó la estimación espacialmente distribuida de variables del suelo mediante la aplicación de técnicas de kriging y cokriging (McBratney et al, 1981), o Regresiones Geográficamente Ponderadas (GWR) (Wang et al, 2013;Wang et al, 2014;Zeng et al, 2016), basadas fundamentalmente en la dependencia espacial de las variables de estudio. La utilidad de estas técnicas es mayor para áreas de extensión media y con muestreos bastante intensivos y regulares (Chen et al 2000;Fox and Sabbagh 2002).…”
Section: Introductionunclassified