Over the years, seismic anisotropy characterization has become one of the most popular methods to study and understand the Earth’s deep structures. Starting from more than 20 years ago, considerable progress has been made to map the anisotropic structure beneath Italy and the Central Mediterranean area. In particular, several past and current international projects (such as RETREAT, CAT/SCAN, CIFALPS, CIFALPS-2, AlpArray) focused on retrieving the anisotropic structure beneath Italy and surrounding regions, promoting advances in the knowledge of geological and geodynamical setting of this intriguing area. All of these studies aimed at a better understanding the complex and active geodynamic evolution of both the active and remnant subduction systems characterising this region and the associated Apennines, Alps and Dinaric belts, together with the Adriatic and Tyrrhenian basins. The presence of dense high-quality seismic networks, permanently run by INGV and other institutions, and temporary seismic stations deployed in the framework of international projects, the improvements in data processing and the use of several and even more sophisticated methods proposed to quantify the anisotropy, allowed to collect a huge amount of anisotropic parameters. Here a collection of all measurements done on core refracted phases are shown and used as a measure of mantle deformation and interpreted into geodynamic models. Images of anisotropy identify well-developed mantle flows around the sinking European and Adriatic slabs, recognised by tomographic studies. Slab retreat and related mantle flow are interpreted as the main driving mechanism of the Central Mediterranean geodynamics.