Information about the growth, productivity, and distribution of vegetation, which are highly relied on and sensitive to natural and anthropogenic factors, is essential for agricultural production management and eco-environmental sustainability in the Amur River Basin (ARB). In this paper, the spatialâtemporal trends of vegetation dynamics were analyzed at the pixel scale in the ARB for the period of 1982â2013 using remotely sensed data of long-term leaf area index (LAI), fractional vegetation cover (FVC), and terrestrial gross primary productivity (GPP). The spatial autocorrelation characteristics of the vegetation indexes were further explored with global and local Moranâs I techniques. The spatialâtemporal relationships between vegetation and climatic factors, land use/cover types and hydrological variables in the ARB were determined using a geographical and temporal weighted regression (GTWR) model based on the observed meteorological data, remotely sensed vegetation information, while the simulated hydrological variables were determined with the soil and water assessment tool (SWAT) model. The results suggest that the variation in area-average annual FVC was significant with an increase rate of 0.0004/year, and LAI, FVC, and GPP all exhibited strong spatial heterogeneity trends in the ARB. For LAI and FVC, the most significant changes in local spatial autocorrelation were recognized over the Sanjiang Plain, and the lowâlow agglomeration in the Sanjiang Plain decreased continuously. The GTWR model results indicate that natural and anthropogenic factors jointly took effect and interacted with each other to affect the vegetated regime of the region. The decrease in the impact of precipitation to vegetation growth over the Songnen Plain was determined as having started around 1991, which was most likely attributed to dramatic changes in water use styles induced by local land use changes, and corresponded to the negative correlation between pasture areas and vegetation indexes during the same period. The analysis results presented in this paper can provide vital information to decision-makers for use in managing vegetation resources.