Precipitation of austenite particles at grain and lath boundaries after aging treatment of a Fe-8Mn-7Ni alloy was investigated by selected area electron diffraction (SAD), X-ray energy dispersive spectrometry (EDS) in a scanning transmission electron microscope (STEM), and high-resolution (HRTEM) analysis. High spatial-resolution (2 to 5 nm) EDS analysis revealed no significant segregation of alloying elements at grain boundaries but the precipitation of very fine particles of Mn-and Nirich phase. Detailed EDS, SAD, and HRTEM analyses all confirmed that these particles are austenite phase, which have a Kurdjumov-Sachs (K-S) orientation relationship with one of the adjacent grain. The concentration of Mn and Ni in austenite, measured by EDS, varied from ϳ15 pct to a maximum of ϳ30 pct. Low-voltage scanning electron microscopy (SEM) fractographs also revealed the presence of very fine, second-phase precipitates on the fracture surface of the embrittled alloys.