This study examined the effect of four margin designs on marginal adaptation of Captek
crowns during selected processing steps. Twenty-four Captek
crowns were fabricated, six each of four margin designs: shoulder (Group A), chamfer (Group B), chamfer with bevel (Group C), and shoulder with bevel (Group D). Marginal discrepancies between crowns and matching dies were measured at selected points for each sample at the coping stage (Stage 1), following porcelain application (Stage 2) and cementation (Stage 3). Digital imaging methods were used to measure marginal gap. The results indicate decreasing trend of margin gap as a function of margin design in the order A>B>C>D. Between processing steps, the trend was in the order Stage 3 < Stage 1 < Stage 2. Porcelain firing had no significant effect on marginal adaptation, but cementation decreased the marginal gap. Generally, the margin gap in Captek
restorations were in all cases less than the reported acceptable range of margin gaps for ceramometal restorations. These results are clinically favorable outcomes and may be associated with the ductility and burnishability of matrix phase in Captek
metal coping margins.