Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
New species of the obligately marine Thraustochytriaceae Sparrow were discovered in subantarctic and antarctic waters of the southeastern Indian Ocean, the southwestern Pacific Ocean, and the antarctic Ross Sea during two cruises of the research vessel USNS ELTANIN. The life cycles of four species of Thraustochytrium in seawater‐pollen and/or seawater‐brine shrimp larvae cultures are described. Thraustochytrium antarcticum sp. nov. develops sporangia that may proliferate from a single basal rudiment. Flagellated zoospores are liberated from the sporangium upon complete disintegration of the sporangial wall at maturity. Thraustochytrium rossii sp. nov. and T. kerguelensis sp. nov. are both similar in that they develop sporangia that may proliferate from more than one basal rudiment. The latter species releases flagellated zoospores upon complete disintegration of the sporangial wall, but the former species liberates a mass of individually immobile zoospores from the sporangium. These remain quiescent for several hours before they swim away one after another. The protoplast of Thraustochytrium amoeboidum sp. nov. leaves the sporangium through a pore as an amoeboid body which then gives rise to nonflagellated amoebospores by successive bipartitioning. Laterally biflagellate thraustochytrioid zoospores were also observed, but the way in which they are formed remains to be determined. Zoosporic and aplanosporic phycomycetes were recovered from water samples collected in the Subtropical, Subantarctic, and Antarctic Zones of the Southern Ocean. Highest numbers of phycomycete propagules were found in antarctic waters near the Antarctic Convergence during ELTANIN's Cruise 51. In the Subtropical and Subantarctic (but not in the Antarctic) Zones fungal population densities increased with proximity to continents or islands. At each station where phycomycetes were recovered, highest numbers of propagules were generally found in the surface layers (25–250 m) of the ocean below the photic zone (lower limit 30–60 m). This peculiar distribution may indicate that phycomycetes are engaged in decomposing substances derived from the photic zone.
New species of the obligately marine Thraustochytriaceae Sparrow were discovered in subantarctic and antarctic waters of the southeastern Indian Ocean, the southwestern Pacific Ocean, and the antarctic Ross Sea during two cruises of the research vessel USNS ELTANIN. The life cycles of four species of Thraustochytrium in seawater‐pollen and/or seawater‐brine shrimp larvae cultures are described. Thraustochytrium antarcticum sp. nov. develops sporangia that may proliferate from a single basal rudiment. Flagellated zoospores are liberated from the sporangium upon complete disintegration of the sporangial wall at maturity. Thraustochytrium rossii sp. nov. and T. kerguelensis sp. nov. are both similar in that they develop sporangia that may proliferate from more than one basal rudiment. The latter species releases flagellated zoospores upon complete disintegration of the sporangial wall, but the former species liberates a mass of individually immobile zoospores from the sporangium. These remain quiescent for several hours before they swim away one after another. The protoplast of Thraustochytrium amoeboidum sp. nov. leaves the sporangium through a pore as an amoeboid body which then gives rise to nonflagellated amoebospores by successive bipartitioning. Laterally biflagellate thraustochytrioid zoospores were also observed, but the way in which they are formed remains to be determined. Zoosporic and aplanosporic phycomycetes were recovered from water samples collected in the Subtropical, Subantarctic, and Antarctic Zones of the Southern Ocean. Highest numbers of phycomycete propagules were found in antarctic waters near the Antarctic Convergence during ELTANIN's Cruise 51. In the Subtropical and Subantarctic (but not in the Antarctic) Zones fungal population densities increased with proximity to continents or islands. At each station where phycomycetes were recovered, highest numbers of propagules were generally found in the surface layers (25–250 m) of the ocean below the photic zone (lower limit 30–60 m). This peculiar distribution may indicate that phycomycetes are engaged in decomposing substances derived from the photic zone.
Decomposition of organic matter in marine sediments is a critical step influencing oxygen and carbon fluxes. In addition to heterotrophic bacteria and fungi, osmoheterotrophic protists may contribute to this process, but the extent of their role as decomposers is still unknown. Among saprophytic protists, the thraustochytrids have been isolated from different habitats and substrates. Recently, they have been reported to be particularly abundant in marine sediments characterized by the presence of recalcitrant organic matter such as seagrass and mangrove detritus where they can reach biomass comparable to those of other protists and bacteria. In addition, their capacity to produce a wide spectrum of enzymes suggests a substantial role of thraustochytrids in sedimentary organic decomposition. Moreover, thraustochytrids may represent a food source for several benthic microorganisms and animals and may be involved in the upgrading of nutrient-poor organic detritus. This chapter presents an overview on studies of thraustochytrids in benthic ecosystems and discusses future prospectives and possible methods to quantify their role in benthic food webs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.