tion-mass spectrometry (LC-ESI-MS) analysis. We hereby report the exact identity of 16 oxysterols and downstream metabolites, including cholestenoic acids, found in human CSF (Supplemental Table 1; supplemental material available online with this article; doi:10.1172/JCI68506DS1). The most abundant of these metabolites (19.48-0.40 ng/ml; Supplemental Figure 1) were 7α-hydroxy-3-oxocholest-4-en-26-oic acid (7αH,3O-CA), 3β-hydroxycholest-5-en-26-oic acid (3β-HCA), and 2 newly identified metabolites in CSF, 3β,7α-diHCA and 3β,7β-dihydroxycholest-5-en-26-oic acid (3β,7β-diHCA). Precursors of these acids, including 26-HC and newly identified 7α,26-dihydroxycholesterol (7α,26-diHC; cholest-5-ene-3β,7α,26-triol) and 7α,26-dihydroxycholest-4-en-3-one (7α,26-diHCO), were also found, but at lower levels (0.15-0.03 ng/ml). Our results thus identified 4 novel oxysterol metabolites in human CSF that were downstream of 26-HC ( Figure 1A). 26-HC is metabolized via 7α,26-diHC and 7α,26-diHCO, or via 3β-HCA and 3β,7α-diHCA, to 7αH,3O-CA. While 26-HC can cross the blood-brain barrier (BBB) and enter the brain from the circulation (25), 7αH,3O-CA traverses the BBB and is exported from the brain (26). Very low levels of 24S-hydroxycholesterol (24S-HC; cholest-5-ene-3β,24S-diol), 25-hydroxycholesterol (25-HC; cholest-5-ene-3β,25-diol), and newly identified 7α,25-dihydroxycholesterol (7α,25-diHC; cholest-5-ene-3β,7α,25-triol) and 7α,25-dihydroxycholest-4-en-3-one (7α,25-diHCO) were also found in CSF (0.08-0.03 ng/ml).Reduced levels of 7α-hydroxylated cholestenoic acids in CSF and plasma/serum of human patients with SPG5. SPG5 presents with upper motor neuron signs and results from mutations in CYP7B1, encoding the oxysterol 7α-hydroxylase responsible for 7α-hydroxylation of side-chain oxidized sterols that is required for extrahepatic synthesis of 7αH,3O-CA and its precursor, 3β,7α-diHCA ( Figure 1A and ref. 18). In order to examine the pathogenic role of such mutations, we sought to identify alterations in oxysterol and cholestenoic acid profiles in CSF and plasma from these patients and then examine the biological activities of the altered metabolites. We first studied the CSF from 3 patients with SPG5