2005
DOI: 10.1198/106186005x76983
|View full text |Cite
|
Sign up to set email alerts
|

Markov chain Monte Carlo Using an Approximation

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

1
311
0
1

Year Published

2006
2006
2020
2020

Publication Types

Select...
7
2

Relationship

1
8

Authors

Journals

citations
Cited by 272 publications
(313 citation statements)
references
References 16 publications
1
311
0
1
Order By: Relevance
“…The validity of the assumptions for our application is discussed in the paper. We would like to note that two-stage MCMC algorithms have been used previously (e.g., [2,16,22,10]) in different situations.…”
mentioning
confidence: 99%
“…The validity of the assumptions for our application is discussed in the paper. We would like to note that two-stage MCMC algorithms have been used previously (e.g., [2,16,22,10]) in different situations.…”
mentioning
confidence: 99%
“…Other possible sampling methods to include in a comparison are the various implementations of the Gibbs sampler for EIT [21,20,27,38], the DRAM method [16], the DREAM algorithm [6,24,37], and the delayed acceptance Metropolis algorithm [11,19]. We can support not including a comparison with DRAM here because in both [4,26], MALA is shown to outperform DRAM on large-scale nonlinear inverse problems similar to EIT.…”
Section: Target 4: Sharp Conductive Inclusionmentioning
confidence: 99%
“…Geralmente, as simulações diretas do método MCMC apresentam a desvantagem de necessitar de um elevado esforço computacional, uma vez que um grande número de simulaçõesé necessário para que obtenha-se a convergência da cadeia de Markov e uma boa taxa de aceitação. Portanto, a fim de minimizar este problema recorre-se a uma eficiente e rigorosa metodologia, conhecida como método MCMC a dois estágios [6,12,13], que pode ser descrito pelo Algoritmo 1.…”
Section: O Método De Monte Carlo Via Cadeias De Markovunclassified