This paper proposes the problem of decision making of an electric vehicle (EV) aggregator in a competitive market in the presence of different uncertain resources. In the proposed model, a bi-level problem is formulated where, in the upper-level, the objective of the aggregator is to maximize its expected profit through its interactions and, in the lower-level, the EV owners minimize their payments. Therefore, the objectives of the upper and the lower-level are contrary. To solve the obtained nonlinear bi-level program, Karush-Kuhn-Tucker (KKT) optimality conditions and strong duality are applied to transform the initial problem into a linear single-level problem. Moreover, to deal with various uncertainties, including market prices, EVs charge/discharge demands and the prices offered by rivals, a risk measurement tool is incorporated into the problem. The proposed model is finally applied to a test system and its effectiveness is evaluated. Simulation results show that the proposed approach has the potential to offer significant benefits to the aggregator and EV owners for better decision-making in an uncertain environment. During different situations, it is observed that with increasing risk-aversion factor, as the aggregator tries to hedge against volatilities, its purchases from day-ahead and negative balancing markets decreases significantly. However, the participation of EV aggregator in the positive balancing market increases accordingly to make more profit.