A new experimental setup for flow rate measurement of gases through microsystems is presented. Its principle is based on two complementary techniques, called droplet tracking method and constant-volume method. Experimental data on helium and argon isothermal flows through rectangular microchannels are presented and compared with computational results based on a continuum model with second-order boundary conditions and on the linearized kinetic BGK equation. A very good agreement is found between theory and experiment for both gases, assuming purely diffuse accommodation at the walls. Also, some experimental data for a binary mixture of monatomic gases are presented and compared with kinetic theory based on the McCormack model.