International audienceHelium mass flow rates in a microchannel were measured, for a wide Knudsen-number range, in isothermal steady conditions. The flow Knudsen numbers, considered here, cover the range from continuum slip regime to the near free molecular regime. We used a single-channel system involved in an experimental platform more powerful than those previously used. The experimental errors and uncertainties were accurately investigated and estimated. In the continuum slip regime, it was found that the first-order approach is pertinent for Knudsen number between 0.03 and 0.3. Moreover, the slip coefficient was deduced by comparing the experiments with the theoretical first-order slip continuum approach. For Knudsen number between 0.03 and 0.7, a polynomial second-power form is proposed for the mass flow rate expression. Otherwise, the experimental results on the mass flow rate were compared with theoretical values calculated from kinetic approaches over the 0.03–50 Knudsen number range, and an overall agreement appears through the comparison. It was also found, when the Knudsen number increased, that the wall influence on measurement occurred first through the accommodation process in the transition regime followed by the wall influence through the aspect ratio in the free molecular regime
International audienceThe main objective of this experimental investigation on the gas flow slip regime is to measure the mass flow rate in isothermal steady flows through cylindrical micro tubes. Two technical procedures devoted to mass flow rate measurements are compared, and the measured values are also compared with the results yielded by different approximated analytical solutions of the gas dynamics continuum equations. Satisfactory results are obtained and the way is clearly opened to measuring mass flow rates for higher Knudsen numbers, over all the micro flow transitional regime
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.