Rice planthoppers and associated virus diseases have become the most important pests threatening food security in China and other Asian countries, incurring costs of hundreds of millions of US dollars annually in rice losses, and in expensive, environmentally harmful, and often futile control efforts. The most economically damaging species, the brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae), cannot overwinter in temperate East Asia, and infestations there are initiated by several waves of windborne spring or summer migrants originating from tropical areas in Indochina. The interaction of these waves of migrants and synoptic weather patterns, driven by the semi-permanent western Pacific subtropical high-pressure (WPSH) system, is of critical importance in forecasting the timing and intensity of immigration events and determining the seriousness of subsequent planthopper build-up in the rice crop. We analysed a 26-year data set from a standardised light trap network in Southern China, showing that planthopper aerial transport and concentration processes are associated with the characteristics (strength and position) of the WPSH in the year concerned. Then, using N. lugens abundance in source areas and indices of WPSH intensity or related sea surface temperature anomalies, we developed a model to predict planthopper numbers immigrating into the key rice-growing area of the Lower Yangtze Valley. We also demonstrate that these WPSH-related climatic indices combined with early-season planthopper catches can be used to forecast, several months in advance, the severity of that season's N. lugens infestations (the correlation between model predictions and outcomes was 0.59), thus allowing time for effective control measures to be implemented.Keywords Nilaparvata lugens · Windborne insect migration · Atmospheric circulation · Rice pests · Planthopper risk prediction · Western Pacific subtropical high-pressure system
Key message• East Asia has experienced a resurgence of serious rice planthopper outbreaks in recent years. In one of the worst-affected areas, the Lower Yangtze Valley of China, the number and timing of brown planthopper immigrants from further south has a major influence on the risk of local outbreaks.• Here we show how seasonal outbreak risk can be predicted from indices of the intensity of the western Pacific subtropical high-pressure system, a major atmospheric circulation system that drives the synoptic weather patterns affecting planthopper immigration.Communicated by V. Gagic.
Electronic supplementary materialThe online version of this article (https ://doi