The deposition of immunoglobulin light chains (IgLCs) in the form of amorphous aggregates or amyloid fibrils in different tissues of patients can lead to severe and potentially fatal organ damage, requiring transplantation in some cases. There has been great interest in recent years to elucidate the origin of the very different in vivo solubilities of IgLCs, as well as the molecular determinants that drive either the formation of ordered amyloid fibrils or disordered amorphous aggregates. It is commonly thought that the reason of this differential aggregation behaviour is to be found in the amino acid sequences of the respective IgLCs, i.e. that some sequences display higher intrinsic tendencies to form amyloid fibrils. Here we perform in depth Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip) of 9 multiple myeloma patient-derived IgLCs, the amino acid sequences of all of which we have solved by de novo protein sequencing with mass spectrometry. The latter technique was also used for one IgLc from a patient with AL amyloidosis. We find that all samples also contain proteases that fragment the proteins under physiologically relevant mildly acidic pH conditions, leading to amyloid fibril formation in all cases. Our results suggest that while every pathogenic IgLC has a unique ThAgg fingerprint, all sequences have comparable amyloidogenic potential. Therefore, extrinsic factors, in particular presence of, and susceptibility to, proteolytic cleavage is likely to be a strong determinant of in vivo aggregation behaviour. The important conclusion, which is corroborated by systematic analysis of our sequences, as well as many sequences of IgLCs from amyloidosis patients reported in the literature, challenges the current paradigm of the link between sequence and amyloid fibril formation of pathogenic light chains.