In hostile and remote environments, such as mountains, forests or suburban areas, traditional communications may not be available, especially after a disaster, such as a flood, a forest fire or an earthquake. In these situations, the wireless networks may become congested or completely disrupted and may not be adequate to support the traffic generated by rescuers. It is also considered as the key tool in Corona Virus (COVID-19) battle. Moreover, the conventional approaches with fixed gateways may not work either, and this might lead to decoding errors due to the large distance between mobile nodes and the gateway. To avoid the decoding errors and improve the reliability of the messages, we propose to use intermediate Unmanned Aerial Vehicles (UAVs) to transfer messages from ground-based Long Range (LoRa) nodes to the remote base station (BS). Specifically, this UAV-enabled LoRa architecture is based on the ad hoc WiFi network, wherein, UAVs act as relays for the traffic generated between LoRa nodes and BS. To make the architecture more efficient, a distributed topology control algorithm is also proposed for UAVs. The algorithm is based on virtual spring forces and movement prediction technique that periodically updates the UAV topology to adapt to the movement of the ground-based LoRa nodes that move on the surface. The simulation results show the feasibility of the proposed approach for packet reception rate and average delay quality of service (QoS) metrics. It is observed that the mechanisms implemented in a UAV-enabled LoRa network effectively help to improve the packet reception rate with nominal buffer delays.