Considering great benefits brought by massive multiple-input multiple-output (MIMO) technologies in Internet of things (IoT), it is of vital importance to analyze new massive MIMO channel characteristics and develop corresponding channel models. In the literature, various massive MIMO channel models have been proposed and classified with different but confusing methods, i.e., physical vs. analytical method and deterministic vs. stochastic method. To have a better understanding and usage of massive MIMO channel models, this work summarizes different classification methods and presents an up-to-date unified classification framework, i.e., artificial intelligence (AI)-based predictive channel models and classical non-predictive channel models, which further clarify and combine the deterministic vs. stochastic and physical vs. analytical methods. Furthermore, massive MIMO channel measurement campaigns are reviewed to summarize new massive MIMO channel characteristics. Recent advances in massive MIMO channel modeling are surveyed. In addition, typical non-predictive massive MIMO channel models are elaborated and compared, i.e., deterministic models and stochastic models, which include correlation-based stochastic model (CBSM), geometry-based stochastic model (GBSM), and beam domain channel model (BDCM). Finally, future challenges in massive MIMO channel modeling are given.Index Terms-Massive MIMO channel models, AI/ML-based predictive channel models, geometry-based stochastic model, correlation-based stochastic model, beam domain channel model.