Optical trapping of sub−micrometer particles in three dimensions has been attracting increasing attention in a wide variety of fields such as physics, chemistry, and biologics. Optical fibers that allow stable trapping of such particles are not readily available but beneficial in system integration and miniaturization. Here, we present a readily accessible batch fabrication method, namely tubeless fiber pulling assisted chemical etching, to obtain sharp tapered optical fibers from regular telecommunication single−mode fibers. We demonstrated the applications of such fiber tapers in two non−plasmonic optical trapping systems, namely single− and dual−fiber−taper−based trapping systems. We realized single particle trapping, multiple particle trapping, optical binding, and optical guiding with sub−micrometer silica particles. Particularly, using the dual fiber system, we observed the three−dimensional optical trapping of swarm sub−micrometer particles, which is more challenging to realize than trapping a single particle. Because of the capability of sub−micrometer particle trapping and the accessible batch fabrication method, the fiber taper−based trapping systems are highly potential tools that can find many applications in biology and physics.