The aim of the present study was to compare external loads (EL) between elite, junior, male and female basketball players. Male (n = 25) and female players (n = 48) were monitored during 11 competitive matches (3 matches per team). EL was measured using local positioning system and microsensor technology to determine total, high-intensity (14–21 km·h−1), and sprint (>21 km·h−1) distance (m) covered, total (n) and relative (n·min−1) accelerations and decelerations, ratio of accelerations:decelerations, and total (arbitrary units [AU]) and relative (AU·min−1) player load. EL was compared between sexes overall and according to each playing position (guards, forwards, and centers). Males covered larger (p < 0.05) high-intensity and sprint distances, and completed more (p < 0.05) decelerations than females; while female players experienced a greater (p < 0.05) ratio of accelerations:decelerations. Greater decelerations (p < 0.05) were observed for males in the guard position compared to females, while more (p < 0.05) accelerations·min−1 were apparent for females in the forward position compared to males. The current findings indicate differences in EL, particularly the high-intensity and acceleratory demands, exist between elite, junior, male and female basketball players during competition and are affected by playing position. These outcomes can be used in developing sex- and position-specific training plans, and in turn improving the physical preparedness of junior basketball players for competition demands at the elite level.