Macrophages are implicated in the local inflammatory response that accompanies spontaneous preterm labor/birth; however, their role is poorly understood. We hypothesized that decidual macrophages undergo an M1 polarization during spontaneous preterm labor and that PPARγ activation via rosiglitazone would attenuate the macrophage-mediated inflammatory response, preventing preterm birth. Herein, we show that: 1) decidual macrophages undergo an M1-like polarization during spontaneous term and preterm labor; 2) M2-like macrophages are more abundant than M1-like macrophages in decidual tissue; 3) decidual M2-like macrophages are reduced in preterm pregnancies compared to term pregnancies, regardless of the presence of labor; 4) decidual macrophages express high levels of TNF and IL12, but low levels of PPARγ, during spontaneous preterm labor; 5) decidual macrophages from women who underwent spontaneous preterm labor display plasticity by M1↔M2 polarization in vitro; 6) incubation with rosiglitazone reduces the expression of TNF and IL12 in decidual macrophages from women who underwent spontaneous preterm labor; and 7) treatment with rosiglitazone reduces the rate of LPS-induced preterm birth and improves neonatal outcomes by reducing the systemic pro-inflammatory response in B6 mice and down-regulating mRNA and protein expression of NFκB, TNF, and IL10 in decidual and myometrial macrophages. In summary, we demonstrated that decidual M1-like macrophages are associated with spontaneous preterm labor, and that PPARγ activation via rosiglitazone can attenuate the macrophage-mediated pro-inflammatory response, preventing preterm birth and improving neonatal outcomes. These findings suggest that the PPARγ pathway is a new molecular target for future preventative strategies for spontaneous preterm labor/birth.