Aim/hypothesis: Obesity is a global problem with high risks of cardiovascular diseases, stroke and type 2 diabetes. It is well known that maternal obesity affects offspring by inducing malformation, functional abnormalities in many organs and cells, and by increased risk of obesity and type 2 diabetes. However, little is known about abnormalities induced by maternal obesity in pancreatic beta cells of offspring. Methods: We used mouse mothers with the Agouti yellow modification on a C57BL/6 background as a maternal model of normoglycaemic obesity, and produced Agouti-negative offspring. Half of the offspring were fed a high-fat diet. Offspring glucose tolerance was tested at different ages, and animals were killed at 50 weeks of age for islet function analysis. Results: Maternal obesity impaired glucose tolerance in female offspring fed a high-fat diet, and significantly reduced insulin secretion at 50 weeks of age in female offspring that had been fed a normal diet and high-fat diet. Insulin secretion and glucose potentiation from these islets were significantly reduced. Islet protein, DNA and insulin contents were increased while glyceraldehyde-3-phosphate dehydrogenase and transketolase activities were reduced in female offspring. Conclusions/interpretation: Our results indicate that maternal obesity has a long-term effect on the beta cells of female, but not of male, offspring, and leads to increased risk of gestational diabetes and type 2 diabetes in the offspring's later lives.