Undernutrition exposure during the perinatal period reduces the growth kinetic of the offspring and sensitizes it to the development of chronic adult metabolic diseases both in animals and in humans. Previous studies have demonstrated that a 50% maternal food restriction performed during the last week of gestation and during lactation has both short- and long-term consequences in the male rat offspring. Pups from undernourished mothers present a decreased intrauterine (IUGR) and extrauterine growth restriction. This is associated with a drastic reduction in their leptin plasma levels during lactation, and exhibit programming of their stress neuroendocrine systems (corticotroph axis and sympatho-adrenal system) in adulthood. In this study, we report that perinatally undernourished 6-month-old adult animals demonstrated increased leptinemia (at PND200), blood pressure (at PND180), food intake (from PND28 to PND168), locomotor activity (PND187) and altered regulation of glycemia (PND193). Cross-fostering experiments indicate that these alterations were prevented in IUGR offspring nursed by control mothers during lactation. Interestingly, the nutritional status of mothers during lactation (ad libitum feeding v. undernutrition) dictates the leptin plasma levels in pups, consistent with decreased leptin concentration in the milk of mothers subjected to perinatal undernutrition. As it has been reported that postnatal leptin levels in rodent neonates may have long-term metabolic consequences, restoration of plasma leptin levels in pups during lactation may contribute to the beneficial effects of cross-fostering IUGR offspring to control mothers. Collectively, our data suggest that modification of milk components may offer new therapeutic perspectives to prevent the programming of adult diseases in offspring from perinatally undernourished mothers.