Pavement structure bearing capacity is an important evaluation parameter in pavement design, construction, maintenance management, and reconstruction, and is generally expressed by the pavement deflection value. Some of the current road bearing capacity detection equipment have high detection accuracy, but the detection speed is slow, they cannot achieve real-time continuous detection; and some detection speeds are fast, but the measurement accuracy is easily affected by the pavement roughness and vehicle vibration. Moreover, the detection result is the pavement displacement, which cannot directly reflect the comprehensive modulus of the pavement structure. In this paper, firstly, a two-stage jump mechanical model of “machine-pavement” system is established in order to develop a device that can simulate the real driving load and continuously test the bearing capacity of pavement structure, and the main factors affecting the acceleration response of vibrating drums were determined through analysis. Then, a finite element model of the “machine-pavement” system was established to overcome the difficulty in obtaining the parameters such as vibrating weight, equivalent stiffness, and equivalent damping of pavement structure in numerical solution of dynamic model. Next, the mean value A of the maximum acceleration signal of the vibrating drum and the coefficient of variation acv of the maximum acceleration signal were selected as evaluation indicators to analyze the change trend of the maximum acceleration of the vibrating drum with the excitation frequency and excitation force under different composite modulus of pavement structures. Finally, the relationship between the composite modulus E of the pavement structure and the maximum acceleration A of the vibrating drum was obtained by simulating the pavement structure with the composite modulus ranging from 100 MPa to 2900 MPa, and the accuracy of this relationship was verified by field tests. The research showed that the acceleration signal of the vibrating drum had a good fitting relationship with the bearing capacity of the pavement structure when the testing device with the vibrating drum mass of 100 kg, the exciting frequency of 60 Hz, and the exciting force of 650 N jumped on the pavement structure, and the error was about 20% after comparing with the results of Benkelman beam testing, which basically met the engineering requirements. Therefore, the device can be used to continuously detect the bearing capacity of pavement structures.