In this paper, Mathematical Model of COVID-19 Pandemic is formulated and discussed. The positivity, boundedness, and existence of the solutions of the model equations are stated and proved. The Disease-free equilibrium point & endemic equilibrium points are identified. Stability Analysis of the model is done with the concept of Next generation matrix. we have investigated that Disease-free equilibrium point (DFEP) of the model is locally asymptotically stable if α≤β+δ+µ & unstable if α>β+δ+µ, The basic reproduction number (threshold value) R 0 is the largest eigen value in spectral radius matrix ρ. Thus, eigen values of spectral radius Matrix ρ are determined from the roots of characteristic polynomial equation, det[ρ-λI]=0, Hence, the basic reproduction number is R 0 =α / β. It is shown that if reproduction number is less than one, then COVID-19 cases will be reduced in the community. However, if reproduction number is greater than one, then covid-19 continue to persist in the Community. Lastly, numerical simulations are done with DEDiscover 2.6.4. Software. It is observed that with Constant treatment, increase or decrease contact rate among persons leads great variation on the basic reproduction number which is directly implies that infection rate plays a vital role on decline or persistence of COVID-19 pandemic.