The efficiency of wheeled agricultural tractors when performing traction technological operations is characterized by two aspects. The first of these is traction efficiency, which mainly depends on the coupling weight of the tractor and the perfection of its running system. Another aspect is environmental friendliness, which is determined by the level of compaction impact on the soil. In general, these aspects are oppositely directed. That is, an increase in traction efficiency requires an increase in the grip weight and, as a consequence, an increase in the radial load on the tires and the internal pressure in them. This leads to an increase in tire pressure on the ground and deterioration in their environmental performance. As a result of excessive soil compaction, the yield of agricultural crops is significantly reduced. To solve this problem, it is necessary to reduce the tire pressure on the ground, which can be achieved by reducing the grip weight or developing and introducing new innovative tire designs. But, even new innovative tire designs have corresponding limitations due to the radial load interval, internal pressure, travel speed and the amount of torque on the wheel. These restrictions form the area of possible operating modes of tractor tires, individual sections of which differ significantly in terms of traction efficiency and environmental friendliness. Within the limits of possible modes of operation of the tire, operating modes must be implemented in areas of high efficiency and environmental friendliness.
The materials of this article are basic in the study and substantiation of rational operating modes of tractor agricultural tires, and also provide prerequisites for the formation of recommendations for improving the traction efficiency and environmental friendliness of wheeled tractors