2012
DOI: 10.1134/s0021894412020162
|View full text |Cite
|
Sign up to set email alerts
|

Mathematical model of micropolar elastic thin plates and their strength and stiffness characteristics

Abstract: A number of hypotheses were formulated using the properties of an asymptotic solution of boundary-value problems of the three-dimensional micropolar (moment asymmetric) theory of elasticity for areas with one geometrical parameter being substantially smaller than the other two (plates and shells). A general theory of bending deformation of micropolar elastic thin plates with independent fields of displacements and rotations is constructed. In the constructed model of a micropolar elastic plate, transverse shea… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
17
0
3

Year Published

2014
2014
2022
2022

Publication Types

Select...
6
1

Relationship

0
7

Authors

Journals

citations
Cited by 22 publications
(20 citation statements)
references
References 14 publications
0
17
0
3
Order By: Relevance
“…Question of reduction of three-dimensional static problem of asymmetric theory of elasticity for thin domain of the shell to two-dimensional problem is considered on the basis of asymptotic method with boundary layer [14], including the question of satisfaction of boundary conditions on shell edge Σ .…”
Section: Asymptotic Solution (Construction Of Internal Problem) Of Bomentioning
confidence: 99%
See 3 more Smart Citations
“…Question of reduction of three-dimensional static problem of asymmetric theory of elasticity for thin domain of the shell to two-dimensional problem is considered on the basis of asymptotic method with boundary layer [14], including the question of satisfaction of boundary conditions on shell edge Σ .…”
Section: Asymptotic Solution (Construction Of Internal Problem) Of Bomentioning
confidence: 99%
“…In papers [12]- [14] the mentioned idea is developed: on the basis of qualitative aspects of asymptotic solution adequate hypotheses are formulated and as a result static and dynamic applied theories of micropolar elastic thin shells and plates are constructed. The accepted hypotheses are the followings: 1) During the deformation initially straight and normal to the shell middle surface fibers rotate freely in space at an angle as a whole rigid body, without changing their length and without remaining perpendicular to the deformed middle surface.…”
Section: Applied Theory Of Micropolar Elastic Thin Shells and Its Jusmentioning
confidence: 99%
See 2 more Smart Citations
“…Основная проблема общей теории микрополярных или классических упругих тонких пластин и оболочек заключается в приближённом, но адекватном сведении трёхмерной задачи микрополярной или классической теории упругости к двумерной краевой задаче. На наш взгляд, для этой цели уместен [12][13][14] при построении прикладной теории тонких пластин и оболочек использование в качестве гипотез основные особенности поведения асимптотического решения краевой или начальнокраевой задачи трёхмерной микрополярной или классической теории упругости в соответствующих тонких областях [15][16][17][18]. Построенные на таком подходе, как микрополярная, так и классическая теории упругих тонких пластин и оболочек будут асимптотически точными теориями.…”
Section: Sargsyan Sh Asymptoticaly Confirmed Hypoteses Metod For the Construction Of Micropolar And Classical Theories Of Elastic Thin Shunclassified