The effect of over-equilibrium, i. e., the effect at which the concentration of some substance is higher than the corresponding equilibrium value, is demonstrated for two types of ideal chemical reactors, continuously stirred tank reactor (CSTR) and plug-flow reactor (PFR), respectively, under conditions of conservatively perturbed-equilibrium (CPE). Two types of complex chemical mechanisms are analyzed, acyclic and cyclic ones. Using numerical experiments and the same residence times, it is shown that for the steady-state PFR this effect is more pronounced that for the steady-state CSTR, and it is true both for acyclic and cyclic reactions. In the studied mechanisms, cyclic and acyclic, the initial concentration of some substance is taken as the equilibrium one, and two other concentrations are the nonequilibrium ones. The greater the difference between the two initially nonequilibrium concentrations, the greater the concentration of the third substance, which was taken initially as the equilibrium one. At the specific values of kinetic parameters considered here, the sensitivity of the occurrence time of the B-concentration extremum for the different reactors (PFR and CSTR) at the fixed mechanism is small, but for the different mechanisms (acyclic and cyclic) at the fixed reactor is significant.