2010
DOI: 10.1007/jhep02(2010)030
|View full text |Cite
|
Sign up to set email alerts
|

Matrix model conjecture for exact BS periods and Nekrasov functions

Abstract: We give a concise summary of the impressive recent development unifying a number of different fundamental subjects. The quiver Nekrasov functions (generalized hypergeometric series) form a full basis for all conformal blocks of the Virasoro algebra and are sufficient to provide the same for some (special) conformal blocks of W-algebras. They can be described in terms of Seiberg-Witten theory, with the SW differential given by the 1-point resolvent in the DV phase of the quiver (discrete or conformal) matrix mo… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
2
1

Citation Types

0
92
0
10

Year Published

2010
2010
2017
2017

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 116 publications
(102 citation statements)
references
References 146 publications
0
92
0
10
Order By: Relevance
“…We adopt the semiclassical path integral approach of Balian and Bloch [34,35] and the geometric Stokes diagram and monodromy picture [6][7][8]36], to express the P/NP relations in terms of all-orders WKB ("exact WKB") actions and dual actions. In so doing, it proves useful to adopt some of the language and ideas from supersymmetric gauge theories, integrability, conformal field theory and wall-crossing [37][38][39][40][41][42][43][44][45][46][47][48], given the close connection of such theories with exact WKB [49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65]. This is similar to the philosophy of [27], where the refined holomorphic anomaly equation of topological string theory is shown to describe these P/NP relations for some 1d quantum oscillator systems.…”
Section: Jhep05(2017)087mentioning
confidence: 99%
See 1 more Smart Citation
“…We adopt the semiclassical path integral approach of Balian and Bloch [34,35] and the geometric Stokes diagram and monodromy picture [6][7][8]36], to express the P/NP relations in terms of all-orders WKB ("exact WKB") actions and dual actions. In so doing, it proves useful to adopt some of the language and ideas from supersymmetric gauge theories, integrability, conformal field theory and wall-crossing [37][38][39][40][41][42][43][44][45][46][47][48], given the close connection of such theories with exact WKB [49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65]. This is similar to the philosophy of [27], where the refined holomorphic anomaly equation of topological string theory is shown to describe these P/NP relations for some 1d quantum oscillator systems.…”
Section: Jhep05(2017)087mentioning
confidence: 99%
“…For the Mathieu system, which is associated with N = 2 supersymmetric gauge theory [49][50][51][52][53][54][55][56][57][58][59][60][61][62][63][64][65], the P/NP relation is:…”
Section: Jhep05(2017)087mentioning
confidence: 99%
“…(See also [42] for 1/N correction.) It has been discussed that direct integral calculation leads to the instanton (q-)expansion of the Nekrasov partition function (and the corresponding expansion of the conformal block) [43][44][45][46][47][48][49].…”
Section: Introductionmentioning
confidence: 99%
“…Дифференциал (2.13) удовлетворяет условию (здесь вариация производится при по-стоянной координате z и постоянном масштабном множителе Λ) 15) поскольку условие их непротиворечивости сводится к симметричности матрицы пе-риодов -частному случаю билинейных соотношений Римана.…”
Section: препотенциалы вз как предел функций некрасоваunclassified
“…Это происходит весьма схожим об-разом с квазиклассикой матричной модели, хотя некоторые подробности (которые будут рассмотрены ниже) отличаются в этих двух случаях весьма существенно. Уже много раз было предложено (см., например, недавние попытки в работах [14], [15]) интерпретировать функции Некрасова в духе матричных моделей и вне рамок ква-зиклассического приближения, по крайней мере, в рамках пертурбативного раз-ложения, с помощью которого вычисляются поправки к препотенциалу. Однако подобное соотношение вовсе не является очевидным.…”
Section: Introductionunclassified