We examine a double trace deformation of SU (N ) Yang-Mills theory which, for large N and large volume, is equivalent to unmodified Yang-Mills theory up to O(1/N 2 ) corrections. In contrast to the unmodified theory, large N volume independence is valid in the deformed theory down to arbitrarily small volumes. The double trace deformation prevents the spontaneous breaking of center symmetry which would otherwise disrupt large N volume independence in small volumes. For small values of N , if the theory is formulated on R 3 × S 1 with a sufficiently small compactification size L, then an analytic treatment of the non-perturbative dynamics of the deformed theory is possible. In this regime, we show that the deformed Yang-Mills theory has a mass gap and exhibits linear confinement. Increasing the circumference L or number of colors N decreases the separation of scales on which the analytic treatment relies. However, there are no order parameters which distinguish the small and large radius regimes. Consequently, for small N the deformed theory provides a novel example of a locally four-dimensional pure gauge theory in which one has analytic control over confinement, while for large N it provides a simple fully reduced model for Yang-Mills theory. The construction is easily generalized to QCD and other QCD-like theories.
Volume independence in large N c gauge theories may be viewed as a generalized orbifold equivalence. The reduction to zero volume (or Eguchi-Kawai reduction) is a special case of this equivalence. So is temperature independence in confining phases. A natural generalization concerns volume independence in "theory space" of quiver gauge theories. In pure Yang-Mills theory, the failure of volume independence for sufficiently small volumes (at weak coupling) due to spontaneous breaking of center symmetry, together with its validity above a critical size, nicely illustrate the symmetry realization conditions which are both necessary and sufficient for large N c orbifold equivalence. The existence of a minimal size below which volume independence fails also applies to Yang-Mills theory with antisymmetric representation fermions [QCD(AS)]. However, in Yang-Mills theory with adjoint representation fermions [QCD(Adj)], endowed with periodic boundary conditions, volume independence remains valid down to arbitrarily small size. In sufficiently large volumes, QCD(Adj) and QCD(AS) have a large N c "orientifold" equivalence, provided charge conjugation symmetry is unbroken in the latter theory. Therefore, via a combined orbifold-orientifold mapping, a well-defined large N c equivalence exists between QCD(AS) in large, or infinite, volume and QCD(Adj) in arbitrarily small volume. Since asymptotically free gauge theories, such as QCD(Adj), are much easier to study (analytically or numerically) in small volume, this equivalence should allow greater understanding of large N c QCD in infinite volume.
This work is a step towards a non-perturbative continuum definition of quantum field theory (QFT), beginning with asymptotically free two dimensional non-linear sigmamodels, using recent ideas from mathematics and QFT. The ideas from mathematics are resurgence theory, the trans-series framework, and Borel-Écalle resummation. The ideas from QFT use continuity on R 1 ×S 1 L , i.e, the absence of any phase transition as N → ∞ or rapid-crossovers for finite-N , and the small-L weak coupling limit to render the semiclassical sector well-defined and calculable. We classify semi-classical configurations with actions 1/N (kink-instantons), 2/N (bions and bi-kinks), in units where the 2d instanton action is normalized to one. Perturbation theory possesses the IR-renormalon ambiguity that arises due to non-Borel summability of the large-orders perturbation series (of Gevrey-1 type), for which a microscopic cancellation mechanism was unknown. This divergence must be present because the corresponding expansion is on a singular Stokes ray in the complexified coupling constant plane, and the sum exhibits the Stokes phenomenon crossing the ray. We show that there is also a non-perturbative ambiguity inherent to certain neutral topological molecules (neutral bions and bion-anti-bions) in the semiclassical expansion. We find a set of "confluence equations" that encode the exact cancellation of the two different type of ambiguities. There exists a resurgent behavior in the semi-classical trans-series analysis of the QFT, whereby subleading orders of exponential terms mix in a systematic way, canceling all ambiguities. We show that a new notion of "graded resurgence triangle" is necessary to capture the path integral approach to resurgence, and that graded resurgence underlies a potentially rigorous definition of general QFTs. The mass gap and the Θ angle dependence of vacuum energy are calculated from first principles, and are in accord with large-N and lattice results.
We construct a variety of supersymmetric gauge theories on a spatial lattice, including N = 4 supersymmetric Yang-Mills theory in 3+1 dimensions. Exact lattice supersymmetry greatly reduces or eliminates the need for fine tuning to arrive at the desired continuum limit in these examples.
We formulate a Euclidean spacetime lattice whose continuum limit is (2, 2) supersymmetric Yang-Mills theory in two dimensions, a theory which possesses four supercharges and an anomalous global chiral symmetry. The lattice action respects one exact supersymmetry, which allows the target theory to emerge in the continuum limit without fine-tuning. Our method exploits an orbifold construction described previously for spatial lattices in Minkowski space, and can be generalized to more complicated theories with additional supersymmetry and more spacetime dimensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.