In this paper we consider the degree/diameter problem, namely, given natural
numbers {\Delta} \geq 2 and D \geq 1, find the maximum number N({\Delta},D) of
vertices in a graph of maximum degree {\Delta} and diameter D. In this context,
the Moore bound M({\Delta},D) represents an upper bound for N({\Delta},D).
Graphs of maximum degree {\Delta}, diameter D and order M({\Delta},D), called
Moore graphs, turned out to be very rare. Therefore, it is very interesting to
investigate graphs of maximum degree {\Delta} \geq 2, diameter D \geq 1 and
order M({\Delta},D) - {\epsilon} with small {\epsilon} > 0, that is,
({\Delta},D,-{\epsilon})-graphs. The parameter {\epsilon} is called the defect.
Graphs of defect 1 exist only for {\Delta} = 2. When {\epsilon} > 1,
({\Delta},D,-{\epsilon})-graphs represent a wide unexplored area. This paper
focuses on graphs of defect 2. Building on the approaches developed in [11] we
obtain several new important results on this family of graphs. First, we prove
that the girth of a ({\Delta},D,-2)-graph with {\Delta} \geq 4 and D \geq 4 is
2D. Second, and most important, we prove the non-existence of
({\Delta},D,-2)-graphs with even {\Delta} \geq 4 and D \geq 4; this outcome,
together with a proof on the non-existence of (4, 3,-2)-graphs (also provided
in the paper), allows us to complete the catalogue of (4,D,-{\epsilon})-graphs
with D \geq 2 and 0 \leq {\epsilon} \leq 2. Such a catalogue is only the second
census of ({\Delta},D,-2)-graphs known at present, the first being the one of
(3,D,-{\epsilon})-graphs with D \geq 2 and 0 \leq {\epsilon} \leq 2 [14]. Other
results of this paper include necessary conditions for the existence of
({\Delta},D,-2)-graphs with odd {\Delta} \geq 5 and D \geq 4, and the
non-existence of ({\Delta},D,-2)-graphs with odd {\Delta} \geq 5 and D \geq 5
such that {\Delta} \equiv 0, 2 (mod D).Comment: 22 pages, 11 Postscript figure