The degree-diameter problem seeks to find the maximum possible order of a graph with a given (maximum) degree and diameter. It is known that graphs attaining the maximum possible value (the Moore bound ) are extremely rare, but much activity is focussed on finding new examples of graphs or families of graph with orders approaching the bound as closely as possible.There has been recent interest in this problem as it applies to mixed graphs, in which we allow some of the edges to be undirected and some directed. A 2008 paper of Nguyen and Miller derived an upper bound on the possible number of vertices of such graphs. We show that for diameters larger than three, this bound can be reduced and we present a corrected Moore bound for mixed graphs, valid for all diameters and for all combinations of undirected and directed degrees.
A natural upper bound for the maximum number of vertices in a mixed graph with maximum undirected degree r, maximum directed out-degree z and diameter k is given by the mixed Moore bound. Graphs with order attaining the Moore bound are known as Moore graphs, and they are very rare. Besides, graphs with prescribed parameters and order one less than the corresponding Moore bound are known as almost Moore graphs. In this paper we prove that there is a unique mixed almost Moore graph of diameter k = 2 and parameters r = 2 and z = 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.