2022
DOI: 10.1093/imanum/drac033
|View full text |Cite
|
Sign up to set email alerts
|

Maximal regularity of backward difference time discretization for evolving surface PDEs and its application to nonlinear problems

Abstract: Maximal parabolic $L^p$-regularity of linear parabolic equations on an evolving surface is shown by pulling back the problem to the initial surface and studying the maximal $L^p$-regularity on a fixed surface. By freezing the coefficients in the parabolic equations at a fixed time and utilizing a perturbation argument around the freezed time, it is shown that backward difference time discretizations of linear parabolic equations on an evolving surface along characteristic trajectories can preserve maximal $L^p… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
2

Relationship

0
2

Authors

Journals

citations
Cited by 2 publications
references
References 54 publications
0
0
0
Order By: Relevance