We prove a short time existence result for a system consisting of a geometric evolution equation for a hypersurface and a parabolic equation on this evolving hypersurface. More precisely, we discuss a mean curvature flow scaled with a term that depends on a quantity defined on the surface coupled to a diffusion equation for that quantity. The proof is based on a splitting ansatz, solving both equations separately using linearization and a contraction argument. Our result is formulated for the case of immersed hypersurfaces and yields a uniform lower bound on the existence time that allows for small changes in the initial value of the height function.