The theory of the fundamental limits (TFL) of nonlinear optics is a powerful tool for experimentalists seeking to create molecules and materials with large responses, and for theorists who are seeking to understand how the basic elements of quantum theory delineate the boundaries within which these searches should be conducted. On a practical level, the TFL provides a metric for measuring the performance or 'goodness' of new molecules, relative to what is possible. Explorations of large sets of structures within the theory provide insight into new design rules for creating more active molecules. This article is a review of the TFL, starting with a history of its development and its first use to discover that all molecules as of the year 2000 fell a factor of 30 below the limits, and continuing to the present day where the theory continues to provide research opportunities and challenges. The review focuses on off-resonant nonlinear optics in order to sharply focus on the key elements of the TFL, but pointers are provided to the literature for near-and on-resonance applications.