Current large scale systems show increasing power demands, to the point that it has become a huge strain on facilities and budgets. Researchers in academia, labs and industry are focusing on dealing with this "power wall", striving to find a balance between performance and power consumption. Some commodity processors enable power capping, which opens up new opportunities for applications to directly manage their power behavior at user level. However, while power capping ensures a system will never exceed a given power limit, it also leads to a new form of heterogeneity: natural manufacturing variability, which was previously hidden by varying power to achieve homogeneous performance, now results in heterogeneous performance caused by different CPU frequencies, potentially for each core, to enforce the power limit.In this work we show how a parallel runtime system can be used to effectively deal with this new kind of performance heterogeneity by compensating the uneven effects of power capping. In the context of a NUMA node composed of several multi-core sockets, our system is able to optimize the energy and concurrency levels assigned to each socket to maximize performance. Applied transparently within the parallel runtime system, it does not require any programmer interaction like changing the application source code or manually reconfiguring the parallel system. We compare our novel runtime analysis with an offline approach and demonstrate that it can achieve equal performance at a fraction of the cost.ACM acknowledges that this contribution was authored or co-authored by an employee, or contractor of the national government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only. Permission to make digital or hard copies for personal or classroom use is granted. Copies must bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.