This paper reviews characteristics of heat transfer during quenching high temperature body using liquid jet impingement. The temperature of body is initially kept higher than the Leidenfrost temperature. The flow pattern dramatically changes with a decrease in the surface temperature. At a moment of jet impingement, the liquid is randomly splashed away. After that, it seems to change a cone shape splashed flow, in which liquid is confirmed to be contact with the surface in an impinging zone. Finally, the liquid contact area where occurs rigorous boiling starts moving radially. Under such flow configuration, how surface temperature and heat flux change with time and homogenous nucleation for vapor generation are discussed.