Maximum power point tracking (MPPT) is an effective method to improve the power generation efficiency and power supply quality of a proton exchange membrane fuel cell (PEMFC). Due to the inherent nonlinear characteristics of PEMFC, conventional MPPT methods are often difficult to achieve a satisfactory control effect. Considering this, artificial bee colony algorithm combining fuzzy control (ABC-fuzzy) was proposed to construct a MPPT control scheme for PEMFC. The global optimization ability of ABC algorithm was used to approach the maximum power point of PEMFC and solve the problem of falling into local optimization, and fuzzy control was used to eliminate the problems of large overshoot and slow convergence speed of ABC algorithm. The testing results show that compared with perturb & observe algorithm, conductance increment and ABC methods, ABC-fuzzy method can make PEMFC obtain greater output power, faster regulation speed, smaller steady-state error, less oscillation and stronger anti-interference ability. The MPPT scheme based on ABC-fuzzy can effectively realize the maximum power output of PEMFC, and plays an important role in improving the service life and power supply efficiency of PEMFC.