The panel patterns of soccer balls that change with each World Cup have a significant impact on the balls’ aerodynamic and flight characteristics. In this study, the aerodynamic forces of eleven types of soccer ball with different panel patterns were measured in a wind tunnel experiment. We characterized the panel shapes of soccer balls by the length, cross-sectional area, and the panel grooves’ volume. The results confirmed that the drag and drag crisis characteristics are dependent on the groove length and volumes. Flow separation points were visualized by an oil film experiment and particle image velocimetry (PIV) measurement to understand the drag crisis of the soccer balls. The results showed that the panel shape of the ball significantly changes the position of the separation point near the critical region, where the drags crisis occurs. In the critical region, laminar and turbulent flows coexist on the ball. On the other hand, the effect of panel shape on the separation point position is small in subcritical and supercritical states.