Electrical stimulation through multi-electrode arrays is used to evoke activity in dissociated cultures of cortical neurons. We study the efficacies of a variety of pulse shapes under voltage-as well as current-control, and determine useful parameter ranges that optimize efficacy while preventing damage through electrochemistry. For any pulse shape, stimulation is found to be mediated by negative currents. We find that positive-then-negative biphasic voltage-controlled pulses are more effective than any of the other pulse shapes tested, when compared at the same peak voltage. These results suggest that voltage-control, with its inherent control over limiting electrochemistry, may be advantageous in a wide variety of stimulation scenarios, possibly extending to in-vivo experiments.