This work presents an alternative to studying and determining the torsion modulus, G, in composites. For this purpose, we use a measuring system with a rotation motion sensor coupled with a torsion pendulum that allows for determining the angular position as a function of the time. Then, through an equation derived from mechanical spectroscopy studies that permits the calculation of G's value, the experiments focus on samples of different quantities of calcium carbonate (CaCO 3 ) in unsaturated polyester resins. The results show that CaCO 3 (33.33%W) fillers increase G's value by 88% compared with unsaturated resin (100%W). Furthermore, there is a density increase of approximately 21% with the addition of CaCO 3 , considering the same two samples, which makes these composites the most massive. The relationship between G and composite density shows that it is possible to change the amount of CaCO 3 to increase torsion resistance values in a controlled way.