1993
DOI: 10.1063/1.1144387
|View full text |Cite
|
Sign up to set email alerts
|

Measurement of the Seebeck coefficient by an ac technique: Application to high-temperature superconductors

Abstract: We report on a sensitive and reliable ac technique to measure the Seebeck coefficient S of materials, in particular of high Tc superconductors. The small temperature difference between the ends of the sample allows structure in the S(T) curve to be observed. This technique avoids the creation of a component proportional to dS/dT in the measured signal. Such a component has in the past led to erroneous conclusions regarding the high-temperature superconductor YBCO. A mathematical analysis shows the origin of th… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
11
0
2

Year Published

1996
1996
2020
2020

Publication Types

Select...
7
1

Relationship

0
8

Authors

Journals

citations
Cited by 17 publications
(13 citation statements)
references
References 11 publications
0
11
0
2
Order By: Relevance
“…14 They suggested that this peak, 15,16 never observed by means of dc techniques because of their lesser thermal resolution, had a fluctuative origin. Three years later Logvenov et al 17 and then Aubin et al 18 demonstrated that the peak was a spurious effect generated by the temperature modulation and amplified by the presence of a constant temperature gradient across the sample and by poor thermal contact between the sample and the heat sink. In addition, Aubin et al 18 proposed a technique which used two heaters at the sample ends to avoid the setup of a constant temperature gradient.…”
Section: Introductionmentioning
confidence: 99%
“…14 They suggested that this peak, 15,16 never observed by means of dc techniques because of their lesser thermal resolution, had a fluctuative origin. Three years later Logvenov et al 17 and then Aubin et al 18 demonstrated that the peak was a spurious effect generated by the temperature modulation and amplified by the presence of a constant temperature gradient across the sample and by poor thermal contact between the sample and the heat sink. In addition, Aubin et al 18 proposed a technique which used two heaters at the sample ends to avoid the setup of a constant temperature gradient.…”
Section: Introductionmentioning
confidence: 99%
“…Изме-рения с переменным перепадом температур позволяют исключить или существенно уменьшить ошибки, связанные с неоднородностью ветвей термопар, с медленным дрейфом нуля измерительных приборов, а также ошибки из-за постоянных напряжений, возникающих на неоднородностях электрических цепей вследствие термоэлектрических эффектов. Этот метод имеет неоспоримые преимущества по сравнению с измерениями со статическим перепадом температур при низких температурах, когда амплитуда ΔT очень мала, поскольку должно выполняться условие ΔT << T. Поэтому имеются многочисленные его реализа-ции, предназначенные для измерений термоЭДС при низких температурах [32][33][34][35][36][37]. При высоких темпе-ратурах модуляция перепада не приносит существенного повышения точности, при этом реализация это-го метода сложнее.…”
Section: устройства для измерения термоэдс и электропроводностиunclassified
“…Однако для ТЭ материалов, в которых термоЭДС имеет величину порядка 100 мкВ/К и более, эта неопределенность несущественна. Заметим также, что ошибки, связанные с неоднородностью термопарных проводов, могут быть частично устранены при ис-пользовании переменного перепада температуры [30][31][32][33]. В то же время ошибки второго типа не могут быть устранены при использовании переменного перепада температуры и (или) дифференциальной тер-мопары для измерения перепада, как это иногда предполагается [31].…”
unclassified
“…Measurements with variable temperature difference allow to eliminate or significantly reduce errors associated with inhomogeneity of branches of thermocouples, with slow instrumental drift or constant voltages caused by inhomogeneity of electrical circuits due to thermoelectric effects. This method has an advantage comparing to measurements with static temperature difference at low temperatures, when amplitude of ΔT is very small, because condition, which must be satisfied is ΔT << T. Therefore, there have been numerous variants of its implementation, designed for measuring thermopower at low temperatures [31][32][33][34][35][36]. At high temperatures, gradient modulation does not bring significant increase in accuracy, and implementation of this method is more difficult.…”
Section: Devices For Measuring Thermopower and Electrical Conductivitymentioning
confidence: 99%
“…However, for thermoelectric materials, in which thermopower value is of the order of 100 μV/K or more, this uncertainty is not significant. Note also, that errors associated with inhomogeneity of thermocouple wires may be partially removed, when using alternating temperature difference [29][30][31][32]. At the same time, the second-type errors cannot be eliminated with alternating temperature difference and/or by use of differential thermocouple for measuring temperature difference, as it is sometimes assumed [30].…”
mentioning
confidence: 99%