Array calibration can effectively ensure the positioning accuracy of the ultra-short baseline (USBL) system. Traditional USBL array calibration methods focus on measuring the geometric position of the array elements. However, directional phase differences on the receive path are often ignored in the current calibration process, which can also cause array mismatch, especially when using the superdirective beamforming (SDB) technique. To further improve the calibration accuracy and convenience of the USBL using the SDB technique, a fast calibration method is proposed in this paper. In the new method, the hydrophone geometry error and the receiver path phase error are jointly considered. Then, two calibration models with different complexity are presented, and the conventional beamforming (CBF) beam output is deconvoluted with the calibrated beam pattern. The results of anechoic tank experiments show that the bearing root mean square error (RMSE) can be reduced from 1.663° to 0.081°, and the calibration time can be reduced from hours to tens of minutes.