Concern that human impacts on the environment may be harmful to natural resources such as soils as well as to living conditions is the major motivation for long-term environmental monitoring. However, the evidence that measurement bias is not constant through time affects time series as an artifact; this also holds true for chemical soil monitoring. Measurement instabilities occur along the whole measurement chain, from soil sampling to the expression of results. The first step in controlling measurement instability is to identify its relevant sources, and the second is to control it by stabilizing, minimizing, or quantifying measurement instability. For all five steps in the measurement process, from soil sampling to the expression of the analytical results, sources of measurement instability are identified and measures of control discussed, leading to the main conclusion concerning the requirement to continuously control the relevant environmental and measurement boundary conditions that may affect measurement instability. The innovative aspect of this paper consists in explicitly addressing measurement instability in chemical soil monitoring and tracking it along the whole measurement chain. The paper is also a plea for a change of paradigm in long-term environmental monitoring, namely to consider temporal measurements as unstable unless their degree of stability is traceably demonstrated, adequately quantified, and included in interpretation.