In this study a large dataset on the polycyclic aromatic hydrocarbon (PAH) content of Swiss soils was analysed to evaluate two source apportionment tools, i.e., characteristic PAH ratios/molecular markers and a linear mixing model. Population density and total organic carbon (TOC) content were identified by a multiple regression model as independently and positively influencing the PAH concentrations in Swiss background soil. Specifically, TOC was more strongly positively correlated with the sum of light PAH (naphthalene to phenanthrene) than with the sum of heavy PAH (anthracene to benzo[ghj]perylene), whereas population density was more strongly positively correlated with the sum of heavy PAH than with light PAH. In addition, the sum of the heavy PAH as well as the total sum correlated negatively with sample site altitude. It is therefore hypothesised that heavy PAH are less mobile, whereas light PAH were closer to equilibrium with TOC in the soil. Similar results were found for polychlorinated biphenyls (PCB). The characteristic ratios and molecular markers pointed to pyrogenic origin of PAH in Swiss background soil but did not allow for further differentiation of individual fuel contributions, even though attempts to take environmental fractionation processes into account were made. The comparison of three soil profiles identified with a linear mixing model from the pattern of 16 PAH with >300 PAH emission profiles from the literature suggested urban dust, wood combustion and binders from asphalt as PAH sources. However, also here, environmental fractionation processes probably obscured source characteristic PAH ratios and fingerprints, which thus need to be interpreted with caution.
The surface soil concentrations (0-20 cm) of the Swiss soil monitoring network (NABO) with 105 observation sites representing all major land use types ranged for the sum of 16 EPA PAH (PAH(16)) from 32 to 8465 microg kg(-1) (median 163 microg kg(-1)), for benzo[a]pyrene (BaP) from 0.5 to 1129 microg kg(-1) (median 13 microg kg(-1)) and for the sum of seven IRMM PCB (PCB(7)) from 0.5 to 12 microg kg(-1) (median 1.6 microg kg(-1)). The legal guide values of Switzerland were exceeded for PAH(16) at only three and for BaP at two sites. The PCB(7) concentrations were clearly below any assessment value. The concentration ranges were overlapping between all land use types. Tendencies for higher concentrations were observed at urban and viticulture sites. The overall measurement precision at repeatability conditions ranged from 1 to 37% RSD for PAH(16), BaP and PCB(7). The median bias for the chemical analysis was around zero for PAH(16), +5% for BaP and -5% for PCB(7) with spreads ranging from less than -20% up to more than +30%. The PAH profiles were clearly dominated by phenanthrene. Stratification by land use revealed a prevalence of benzo[a]pyrene at urban and naphthalene at conservation sites. For PCB, the general congener rank order was PCB no. 153 > 138 > 101 > 180. From a broad correlation screening only PAH(16)/BaP (r = 0.88**) were relevant for practical soil protection. The extensive comparison with other studies was severely biased by the lack of harmonisation, especially concerning sampling depth, sampling support, analytical method and the sum calculation procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.