Quantitative analysis of spray droplet fields plays a pivotal role in various domains, encompassing internal combustion engine combustion diagnostics, equipment spray coating and corrosion prevention, and unmanned aerial vehicle-based agricultural pesticide dispersion. Precise measurement of the spatial distribution of spray droplet fields facilitates accurate control and orientation of spraying, thereby propelling the intelligent evolution of both industrial and agricultural sectors. In light of the substantial dimensions of spray fields, achieving focused imaging of all droplets on the camera imaging plane during reconstruction proves unattainable. Addressing this challenge, this study suggests employing a four-camera array configuration. According to the characteristics of the defocusing blur of spray droplets, the cameras on the array capture images of the droplets from diverse perspectives. Subsequently, these images are merged through a refocusing process. This method offers accurate extraction of out-of-focus droplet centers. Employing three-dimensional cross-correlation analysis, the motion trajectories of the spray droplet field can be inferred with precision.