Precipitation is an important component of the hydrological cycle and has significant impact on ecological environment and social development, especially in arid areas where water resources are scarce. As a typical arid and semi-arid region, the Mongolian Plateau is ecologically fragile and highly sensitive to climate change. Reliable global precipitation data is urgently needed for the sustainable development over this gauge-deficient region. With high-quality estimates, fine spatiotemporal resolutions, and wide coverage, the state-of-the-art Integrated Multi-satellite Retrievals for Global Precipitation Measurement (IMERG) and European Center for Medium-range Weather Forecasts Reanalysis 5 (ERA5) have great potential for regional climatic, hydrological, and ecological applications. However, how they perform has not been well investigated on the Mongolian Plateau. Therefore, this study evaluated the performance of three IMERG V06 datasets (ER, LR and FR), two ERA5 products (ERA5-HRES and ERA5-Land), and their predecessors (TMPA-3B42 and ERA-Interim) over the region across 2001–2018. The results showed that all products broadly characterized seasonal precipitation cycles and spatial patterns, but only the three reanalysis products, IMERG FR and TMPA-3B42 could capture interannual and decadal variability. When describing daily precipitation, dataset performances ranked ERA5-Land > ERA5-HRES > ERA-Interim > IMERG FR > IMERG LR > IMERG ER > TMPA-3B42. All products showed deficiencies in overestimating weak precipitation and underestimating high-intensity precipitation. Besides, products performed best in agricultural lands and forests along the northern and south-eastern edges, followed by urban areas and grasslands closer to the center, and worst in the sparse vegetation and bare areas of the south-west. Due to a negative effect of topographic complexity, IMERG showed poor detection capabilities in forests. Accordingly, this research currently supports the applicability of reanalysis ERA5 data over the arid, topographically complex Mongolian Plateau, which can inform regional applications with different requirements.