This project has arisen from the need to produce GFFs (glass fiber filters) bearing a thin and evenly distributed coating of a selected reagent in the equatorial plane for breakthrough studies. However, it has been discovered that today's two general techniques for coating GFFs (total immersion and application of reagent solution to GFFs) have usually produced unevenly distributed coatings of reagent in the equatorial plane. In addition, quantities of reagent on GFFs from commercial sources may vary widely in the same lot of coated GFFs. Consequences are variability in capacity of coated filters at the point of breakthrough and, perhaps, wasted reagent. Although today's reagent-coated filters may be satisfactory for routine air sampling, such filters may be unacceptable for precise breakthrough studies. Research has been conducted successfully to produce nearly evenly distributed coatings of reagents in the equatorial plane of GFFs by application of reagent solutions to the centers of GFFs which are resting on crisscrossing, fine, stainless-steel wire. Distributions of coatings have been determined by punching out twenty-one 5-mm circles from each GFF and analyzing each circle by flow-injection with a UV detector. Lowest achievable relative standard deviations of measurement (RSDs) for reagents in 5-mm circles have been 5 to 7%. Reagents studied have included 1-(2-pyridyl)piperazine (1-2PP), 2,4-dinitrophenylhydrazine (DNPH), and 1-(9-anthracenylmethyl)piperazine (MAP). Factors affecting the distribution of such coatings include choice of reagent and choice of solvent for the reagent solution.