Regular two-dimensional plasma filamentary arrays have been observed in gas breakdown experiments using a pulsed 1.5 MW, 110 GHz gyrotron. The gyrotron Gaussian output beam is focused to an intensity of up to 4 MW/cm2. The plasma filaments develop in an array with a spacing of about one quarter wavelength, elongated in the electric field direction. The array was imaged using photodiodes, a slow camera, which captures the entire breakdown event, and a fast camera with a 6 ns window. These diagnostics demonstrate the sequential development of the array propagating back toward the source. Gases studied included air, nitrogen, SF6, and helium at various pressures. A discrete plasma array structure is observed at high pressure, while a diffuse plasma is observed at lower pressure. The propagation speed of the ionization front for air and nitrogen at atmospheric pressure for 3 MW/cm2 was found to be of the order of 10 km/s.
Two basic challenges limiting the simulation capabilities of the streamer discharge community are the efficient resolution of Poisson's equation and the proper treatment of photoionization. This paper addresses both of these challenges, beginning with a graphics processing unit executed multigrid (MG) algorithm to efficiently solve Poisson's equation on a massively parallel platform. When utilized in a 3D particle-in-cell (PIC) model with radiation transport, the MG solver is demonstrated to reduce the required simulation time by approximately a factor of three over a conventional Jacobi scheme. Next, a fully theoretical photoionization model, based on the basic properties of N 2 and O 2 molecules is developed as an alternative to widely utilized semi-empirical models. Following a review of N 2 emission properties, a total of eight transitions from only three excited states are reported as a base set of transitions for a practical physicsbased photoionization model. A 3D PIC simulation of streamer formation is demonstrated with two dominant transitions included in the radiation transport model.
An electrical breakdown model for liquids in response to a submicrosecond (∼100ns) voltage pulse is presented, and quantitative evaluations carried out. It is proposed that breakdown is initiated by field emission at the interface of pre-existing microbubbles. Impact ionization within the microbubble gas then contributes to plasma development, with cathode injection having a delayed and secondary role. Continuous field emission at the streamer tip contributes to filament growth and propagation. This model can adequately explain almost all of the experimentally observed features, including dendritic structures and fluctuations in the prebreakdown current. Two-dimensional, time-dependent simulations have been carried out based on a continuum model for water, though the results are quite general. Monte Carlo simulations provide the relevant transport parameters for our model. Our quantitative predictions match the available data quite well, including the breakdown delay times and observed optical emission.
A simple model of vacuum/dielectric/vacuum interface breakdown initiation caused by high power microwave has been developed. In contrast to already existing models, a spatially varying electron density normal to the interface surface has been introduced. Geometry and parameter ranges have been chosen close to the conditions of previously carried out experiments. Hence, physical mechanisms have become identifiable through a comparison with the already known experimental results. It is revealed that the magnetic field component of the microwave plays an important role. The directional dependence introduced by the magnetic field leads to a 25% higher positive surface charge buildup for breakdown at the interface downstream side as compared to the upstream side. This and the fact that electrons are, in the underlying geometry, generally pulled downstream favors the development of a saturated secondary electron avalanche or a saturated multipactor at the upstream side of the dielectric interface. The previously observed emission of low energy x-ray radiation from the interface is explained by bremsstrahlung generated by impacting electrons having initially a higher energy than the average emission energy. Final breakdown is believed to be triggered by electron induced outgassing or evaporation, generating a considerable gas density above the dielectric surface and eventually leading to a gaseous breakdown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.